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INTRODUCTION 

 
Real-world application domains such as engineering 

design problems are computationally expensive.  Some 
problems require thousands of simulations, which places a 
major burden on computing assets.  Today’s machine 
capacities have helped by affording users the ability to 
run numerous scenarios to discover a range of possible 
outcomes and to understand the influence of parameter 
variation on a problem.  These activities become problem-
atic as scenario sizes and complexities continuously 
increase.  As a result, the high-performance computers 
often suffer at the hands of a combinatoric explosion.   

 
A single simulation may require hours to days to 

complete, and an exhaustive (“brute force”) exploration of 
the design space for optimization purposes and “what-if” 
analyses can easily call for thousands of simulations. An 
extreme example involves numerical simulations for a 
hurricane study for the Gulf of Mexico that was assigned 
~4 million CPU hours per year over 3 years. This would 
require full utilization of over 500 CPUs.  This results in 
millions of dollars being spent just for computing time 
alone.  The effort proceeded in brute-force manner, 
exhaustively solving over an immense problem space, 
often with very minor tweaks to the initial conditions.  

 
This paper proposes a new approach to analyzing 

engineering design problems, replacing the numerical 
simulations with an emulation capability termed a 
surrogate model.  Developing a surrogate model requires 
an accurate definition of the mapping between all of the 
interesting input values (i.e., the input space) and the 
associated output of the numerical simulation (i.e., the 
output space).  The approach assumes that the number of 
simulations required to sufficiently cover this mapping is 
much smaller than assessing all possible conditions.  A 
significant challenge in this approach involves the process 
whereby the salient factors driving the real-world 
phenomena are teased out through sensitivity analysis and 
expert insight. A divide-and-conquer strategy (input 
bisection) is used to subdivide the input space (within an 
acceptable error bound), which leads to significant 
reductions in the number of simulations required.  The 
partitioning of the input space is driven by the sensitivity 
of the output space to changes to the initial conditions of 

the simulation.  Consequently, finer levels of partitioning 
occur in sections of the input space that produce sig-
nificant changes to the output space.  Conversely, sections 
of input space that result in minimum changes to the 
output are assessed at a much coarser level. 

 
When the partitioning of the input space to locate the 

minimum number of input-output pairs required to 
properly represent the mapping of input to output is 
completed, an artificial neural network (ANN) is trained.  
The ANN has the ability to interpolate the numerical 
model’s reaction to scenarios that were originally 
excluded through the partitioning algorithm.  A properly 
trained ANN provides inferencing capabilities for the 
surrogate model.  

 
Visually interacting with the surrogate model pro-

vides the ability to explore the problem space and quickly 
pinpoint the critical model parameters without the 
expense of running hundreds of unnecessary simulations.  
The surrogate model is refined by running additional 
input/output mapping cases, lowering error thresholds, 
and repeating the ANN training.  This process is repeated 
until an acceptable approximation of the problem is 
obtained. 

 
   

1.  OVERVIEW OF SURROGATE MODEL 

APPROACH 

 
The purpose of this project is to devise 

methodologies/techniques that are elegant, widely 
applicable across many different solvers, and easy to 
implement.  These methodologies will significantly 
reduce the number of high performance computer (HPC) 
runs necessary to acquire solution approximations within 
an acceptable level of accuracy. This paper presents a 
five-step approach to constructing a surrogate model:  
 

• Configure a numerical model MD for a problem 
domain D. 

• Define the set of all possible parameters P that define 
the initial condition of the model.  A subset of the 
parameters, identified as p, is classified by the do-
main expert as critical parameters for the simulation.  

---------------------------------------------------------------------------------------------------------- 
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• Represent the geometry G that defines the spatial 
makeup of D.   

• Represent a series of time-steps T predicted by MD. 

• Define variations of the input space (defined as I) as 
defined by the product set of p, G, and T.   

• Define the output space O by all possible results of 
MD over I. 

 
Therefore the goal of this effort is to develop an 

emulator of MD, termed surrogate model SMD, that has the 
ability to map I to O with similar accuracies to those of 
MD.  Acceptability of SMD is based on the error tolerances 
provided by the domain expert. Error is defined as the 
differences between MD and SMD in mapping I to O.    

 
The underlying algorithm for the SMD is an artificial 

neural network (ANN).  Several variations of ANN 
algorithms have been evaluated; however, for this paper 
the work is based on the backpropagation neural network 
algorithm.  Various configurations of the hidden layer 
have been evaluated that include changes from the 
number of nodes to multiple hidden layers.  

 
The five-step process for creating an SMD is outlined 

as follows: 
 

• Step 1 – Data Preparation:  The goal of this step is 
to identify a subset of I, denoted i, that best rep-
resents the input space in I.  Ideally |i| is significantly 
smaller than |I|.  The reduction process by which i is 
created involves filtering I based on data reduction 
algorithms applied to p, G, and T.   

– p reduction – Reduction based on p follows 
from a bisection algorithm that continuously 
subdivides p until the variations in MD output 
are within tolerance. Partitioning is more prone 
to occur in the complex sections of the input 
space.  For each parameter in p, domain experts 
provide a value that indicates the precision used 
to subdivide each dimension in the parameter 
space.   

– G reduction – The next step involves reducing 
the geometry G by downsampling the number 
of nodes that will be considered during training.  
The resulting geometry is represented by g.  
Note that the reduction occurs only on the inte-
rior nodes.  The boundary nodes are left intact.   

– T reduction – The final step involves down-
sampling the time steps to create a subset t.  
Reducing the number of time-steps considered 
occurs by having a domain expert provide a 
distribution of importance versus time.  
Importance is defined on an interval [0,1].  Each 
time-step is considered for inclusion into i based 
on its probability relative to 1—i.e., its 
importance rating.     

• Step 2 - Configuring the ANN: One of the 
challenges involves properly configuring the ANN.  
A small number of neurons has limited memory and 
underfits the data, while one with too many neurons 
has sufficient memory and possibly overfits or 
memorizes the data.  The objective is to identify an 
ANN configuration that best approximates over I, 
and yet generalizes well on unseen examples selected 
across I. 

• Step 3 - Training the ANN: This step involves 
selecting ~90 percent of the cases (training data) 
identified in i for training purposes.  Training con-
tinues until the approximation ability of the ANN 
reaches a predefined error threshold et or 
convergence, whichever comes first. 

• Step 4 - Validating the SMD against MD: Validation 
occurs by running the ANN over a set of cases in i 
that were not used during training (testing data).  This 
provides an indication of the network’s ability to 
predict outside cases used for training.  Secondly, the 
ANN can be compared to MD based on random cases 
selected across I.  Finally, the MD and SMD can be 
connected to visualization tools that allow domain 
experts to see a side-by-side comparison of both 
models running on selected cases of I.  Results that 
are unacceptable require additional work in Steps 1 
or 2. 

• Step 5 - Constructing the SMD: After the validation 
of the ANN is completed, the next step involves 
packaging it into a usable form.  During this step, the 
goal is to develop the ability to interface with existing 
input files used by MD and tailor the output as 
required by the end users.  SMD s are implemented as 
Windows applications with user controls for varying 
the input values represented as p and time 
represented as t.  A graphical rendering of the SMDs 
output reacts as the user varies p and t.   

 
 

2.  FROM NUMERICAL MODEL TO SURROGATE 

MODEL COUNTERPART 

 
Generally, the input space I to numerical solvers 

defines the physics parameters P (usually through 
boundary or initial conditions), the spatial aspects G 
(through a geometry file associating various Cartesian 
points in space, say [x,y,z], and their connectivities), and 
the temporal dimension T (by enumerating the various 
time-steps for which a solution is desired). Once defined, 
a single set of physics parameters, geometry, and time 
configuration is sent into the numerical solver for 
processing. Upon successful completion, the numerical 
model will issue an output value (or a set of values) for 
each point in the geometry file for each time-step 
represented as O. For example, within a temperature 
problem, a single temperature will be returned for each 
point within the geometry for each time-step, say, in 



 3 

10 minute increments throughout a full day (midnight to 
midnight). Of course, the wide range of variation in 
defining I can (and usually does) result in an enormous 
number of possibilities, and limitations—whether due to 
time, costs, or resources—may preclude investigating all 
of these combinations. A strategy must be delineated t0 
permit the solver to focus its efforts upon that portion of 
the input space (whether it be the parameters, geometry, 
time, or some significant combination thereof) and 
capture the solutions there, while expending considerably 
less effort on less interesting (or less challenging) portions 
of the input space. 

 
Consider the requirements of an ANN trying to learn 

simple input-output pairs. Here the backpropagation 
algorithm is described. Other architectures of neural 
networks and other machine learning techniques may 
work as well as or even better than the backpropagation 
algorithm, depending upon the context of the underlying 
physics problem. A collection of input-output pairs is 
divided into two subsets: a training set (usually 
comprising 90 percent of the collection) and a testing set 
(comprising the remaining 10 percent). The neural 
network runs through, say, 10,000 epochs where it 
receives the training input, adjusts its weights internally, 
and tries to predict the output. The known output is 
compared with the predicted output, and the neural 
network’s weights are then adjusted to minimize error. 
Over time the network can often be trained to emulate the 
training portion of the input-output set within a user-
defined error bound. Of course, noisy input sets can make 
this much more difficult than more well-behaved sets and 
may therefore require more training epochs to converge 
within the error bounds.  

 
Upon the completion of training, the weights (now 

assumed as representative of the training set) are used to 
test the neural network against the testing set. Generally, 
since this set has never been seen and hence the neural 
network has no history of training against this data, the 
error rate should be somewhat higher than the 
corresponding error rate on the training set. Although in 
theory these input sets are as generic as the input 
parameters to any function, they can be used to reflect the 
geometry, the boundary (or initial) conditions, time, and 
the associated output of a numerical solver. That is, the 
ANN can be trained to serve as a surrogate model for the 
numerical solver. The ANN in this case would adjust its 
internal weights to imitate the physics being modeled 
within the numerical solver. The input and output sets 
play the same roles in both tools. Fig. 1 shows some 
commonalities in the relationship between numeric 
solvers and artificial neural networks. 

 
As shown above, the backpropagation algorithm 

when trained properly over input-output sets from a 
numerical solver can serve as a function approximator to 

the solver within the ranges of training. For instance, 
backpropagation neural networks have served as 
interpolation tools for decades within control theory 
applications. The techniques work no differently here.  

 
However, for all of the obvious parallels between the 

numeric solver and the neural network, the differences 
should not be ignored. The neural network as described 
does not work apart, in a vacuum, away from the results 
of the solver. Instead it uses the input and output of the 
solver to imitate the solver. In other words, it does not 
replace the numerical solver; it complements it and 
reduces its use to a bare minimum. Or better yet, it 
provides a second path to numerical solver quality 
answers without the computational burden of actually 
running the numerical solver. These input-output pairs 
being used to train the neural network should collectively 
be representative of the entire input parameter space 
across all of the categories: boundary (or initial) 
conditions, geometry, and time. A loss of 
representativeness in any of these areas handicaps the 
ANN and reduces its effectiveness along that dimension 
of concern. These surrogate models cannot imitate solvers 
for which the input-output pairs are missing. This word-
of-warning cuts both ways—in demanding 
representativeness of the whole parameter space, and in 
refusing any attempts at extrapolation outside the range of 
training.  
 
 

3.  DATA REDUCTION OF NUMERICAL SOLVER 

OUTPUT 

 
A healthy juxtaposition of divergent aims exists here. 

On the one hand, running the numerical solver 
exhaustively over the full input space to the finest 
resolution of parameter inputs would certainly be 
representative of the input space. It would be costly and a 
poor exercise in resourcefulness, but assuredly 
representative. On the other hand, insight is required into 

Fig. 1. 
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the input space. A handful of numerical solver runs is 
probably insufficient to provide the information for an 
approximator to the numerical solver within the desired 
error bounds. So this case would be highly efficient, but 
information-poor. The goal is to identify a minimum set 
of parameter value combinations that sufficiently 
represent the input space. Within the input space, regions 
may exist in which it is relatively easy to predict the 
dynamics of the problem (and hence the output of the 
numerical solver); this area should be sparsely sampled. 
Other regions in the input space may require seemingly 
inordinate amounts of numerical solver runs to adequately 
reflect the dynamics involved; this area accordingly 
should be highly sampled. The distinction between these 
types of regions is essential to any reduction in the 
number of numerical solver runs.  

 
A bisection routine was used to exploit this desire for 

high-resolution insight into these areas of very involved 
dynamics while sampling sparsely in the regions of 
simpler dynamics. Other techniques such as gradient 
methods could have been substituted for the bisection 
method and may prove somewhat more efficient in 
particular cases; but bisection seems reasonable, relatively 
efficient, widely applicable across very different types of 
numerical solvers, easy to implement, and requiring little 
formal justification to users.  

 
The technique in one dimension proceeds as follows: 

Consider parameter pi, from the set of input parameters P, 
regarded as a driving factor in the numerical solver. 
Parameter pi has minimum m and maximum M. The user 
desires outputs from the numerical solver, say, no further 
than 0.3 units apart. The numerical solver is run twice, 
once for parameter pi equal to its minimum m and again 
for parameter pi equal to its maximum M. Now the user 
has the output values for each point in space for each 
time-step, under these divergent input conditions m and 
M. The output sets are compared point by point to 
determine if the maximum difference over all points over 
all times is greater than the 0.3 units desired. (Here an 
average, a standard deviation, or comparison over just a 
handful of key points is possible, depending on the 
context of the problem.) Suppose at least one such 
maximum exists that exceeds the 0.3 units. Then the 
midpoint (m + M)/2 is used as the value of parameter pi in 
the execution of the numerical solver. Similarly, its output 
is compared with those of the preceding runs to its left 
and right, and a decision is made whether to subdivide 
again. In so doing, the bisection method builds a tree that 
reflects the necessities of numerical solver runs over the 
parameter space for this single variable pi. The same 
technique carries over into multiple dimensions, each 
variable considered separately for this purpose. 

 
These driving factors, elsewhere suitably termed 

critical parameters, are chosen with assistance from 

subject matter experts, especially experts in the use and 
execution of the numerical solver under consideration. 
Thresholds can be placed upon these critical parameters to 
ensure that the resulting division of the parameter space 
reflects the desires of the experts for insight into 
particular aspects of the numerical solver output. For 
example, the value 0.3 above serves this threshold role for 
the parameter pi. As shown in Fig. 2, these thresholds are 
used via the bisection method to generate the model input 
files.  These files are then run through the numerical 
solvers to generate a potentially huge training sample 
database. This database, of course, is significantly smaller 
than what would have resulted from an exhaustive 
exploration of the full parameter space.  However, even 
with the thresholds in place and bisection providing a 
more intelligent parsing of the input parameter space, the 
file can still be in the tens of millions to hundreds of 
millions of rows (one for each geometric point at each 
time-step for all possible variations in the critical 
parameters).  How can one further perform data reduction 
on this database of training samples? Again, the priority is 
to reduce as much as possible and still retain 
representativeness of the underlying input parameter 
space.  

 

 
Another data reduction step can be tied to the 

geometry in which the solver is working. Through 
interaction with the subject matter expert, it may be 
decided that the complete boundary to the problem is 
essential to its solution, while of the interior points only a 
random 75 percent (or even 50 percent) is useful. Or 
perhaps only a portion of the boundary is truly essential, 
but more of the interior points are required to capture the 
details of the dynamics. These decisions should be made 
only in consultation with an experienced user of the 
numerical solver codes or with keen insights into the 
dynamics being modeled. However, the resulting 
reduction in the number of rows in the training database 
can be immense—potentially 30 to 40 percent. Similarly, 
there may be a few time-steps within the solver run that 
the user really wants to focus upon—the times 
immediately before and during an unusual event. These 
time-steps can be accentuated, while others, say, those 
occurring later that are less interesting, can be decimated 
through the use of a probability distribution on the time-
steps. Those times that are desirable to keep can be 
associated with a 1 (i.e., 100 percent probability for 
inclusion in the reduced training set), while others, which 

Fig. 2.   
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are less interesting, may be assigned any value between 0 
and 1. The resulting distribution can then be run against 
the training samples database to determine which rows 
will be forwarded on to a reduced training samples 
database and which left behind. For instance, if over the 
full range of 100 time-steps, only the first 20 were 
absolutely essential for inclusion, and of the other 80, 
only 30 percent should be included, a distribution can be 
built so that time-steps 1 to 20 have a probability of 1 and 
time-steps 21 to 100 have a probability of 0.3. Then, on 
average, one should get (20 + 24) 44 time-steps in the 
reduced training sample, a reduction of 56 percent over 
the original database. Of course, it should be emphasized 
that caution should be exercised in all data reduction 
cases to maintain representativeness of the full range of 
parameters within that final reduced data set.  

 
At this stage, the samples are divided into two 

subsets—one serving as a training set for the neural 
network, the other its test set. As mentioned above, the 
training set usually composes 90 percent of the parent set, 
with the remaining 10 percent going toward validation 
through the testing component. These percentages, 
although fairly canonical in the backpropagation 
literature, may vary slightly. As Fig. 3 shows, the neural 
network is trained until convergence criteria are met or its 
maximum number of epochs is completed. Then the test 
set is run through the network with its trained weights to 
determine how well the network can predict outputs on 
data it has never seen before. Here a key decision is made: 
Is the predicted output acceptable? If yes, the neural 
network can be treated as a surrogate model that can 
emulate the numerical solver within the ranges of its 
training. If not, however, several corrective paths lie open 
to pursuit. These options may include, from major to 
minor: (1) going back to the input of the numerical model 
and modifying the thresholds, since as they currently 
stand, they are ineffective at attaining the validated 
surrogate model,(2) revisiting and loosening the decisions 
made concerning inclusion and exclusion of geometry and 
time data points within the original training database, (3) 
altering the neural network algorithm from 
backpropagation to, say, recurrent networks, (4) changing 
the internal architecture of the current neural network by 
increasing the number of nodes within the hidden layer, 
and (5) modifying the neural network convergence 
criteria, forcing it into a tighter bound OR increasing the 
required number of epochs to execute during training. All 
of these possibilities require modification to some portion 
of the surrogate model construction process, some much 
more significant than others; however, some fix (perhaps 
a combination of some of the steps) is necessary since an 
invalidated surrogate model serves no practical purpose, 
and the user has gained no efficiencies by the additional 
steps. Some examples follow. 

 

 
Fig. 3. 

 

4.  STUDY DOMAINS 

 
Three trials of this technique have been conducted 

over widely divergent problem types. In the first, fairly 
simplistic proof-of-concept scenario, a two-dimensional 
model of the Herbert Hoover Dike was executed within 
surface-water/ground-water flow code (WASH123), 
where hydraulic conductivities and material types varied, 
to attempt predicting the flow at 21 cross-sections. In the 
second, a surface-water/ground-water code (ADaptive 
Hydraulics (ADH)) was used to quantify thermal effects 
caused by the effects of variations in albedo and the 
specific heat of solids within a three-dimensional model. 
The third involved using ADH to simulate the effects of a 
contaminant trace in a harbor, where the eddy viscosity 
and velocity varied.  

 
4.1  Herbert Hoover Dike 

 
This study case originated as a simple proof-of-

concept exercise based on WASH3D runs of the Herbert 
Hoover Dike. The model had been executed under 11 
material types and 3 hydraulic conductivity values, 
resulting in 33 input values. The outputs were just 21 
points that quantified the cross-sectional flow. As this 
data had come from a design study, there were cases with 
and without a dike structure in place. While only 22 cases 
were available, which was far too few to build an 
adequate surrogate model, this small data set served 
remarkably well as a test-bed for performing sensitivity 
analyses over variations in backpropagation architectures 
(where the number of nodes in the hidden layer were 
varied) and the number of training epochs. The number of 
nodes in the hidden layer was varied from 15 to 70, and 
the number of training epochs varied from 100 to 10,000. 
Since the data sets were relatively small, this allowed for 
an exhaustive creation of neural networks to perform 
cross validation. In total, 4488 neural networks were built, 
and the results were compared globally using the standard 
deviation of the predicted to WASH3D output. One such 
model is illustrated in Fig. 4 showing approximately 2 
percent error of predicted to actual. 
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Again, this demonstration was created more as a 

sandbox to see if neural networks had anything to offer 
this scenario, and in so proceeding, resulted in the 
creation of numerous tools for performing sensitivity 
analyses of the output. Because of the relative low 
quantity of data, there was no need to perform bisection, 
or data reduction techniques, here. 

 
4.2  3D Thermal Problem 

 
Efforts to emulate the output of a three-dimensional 

thermal problem began the ongoing battle between an 
avalanche of data and its reduction to a manageable, yet 
representative amount. Rather than run this scenario 
exhaustively, the bisection code was utilized to batch-
process the runs over variations in albedo and the specific 
heat of solids. Over the range of albedo and the specific 
heat of solids individually, the batch processing resulted 
in 81 distinct cases (which served as input to the neural 
network). In the preliminary stages, only one time-step 
was analyzed to see if a trained neural network could 
predict temperatures at a particular time, knowing only 
what similar albedo and specific heat of solids models 
were doing at that same time. As this severely reduced the 
size of the data set, no data reduction techniques were 
employed in these stages. Using the previously developed 
sensitivity analysis tools, neural networks were developed 
varying the number of training epochs and the number of 
nodes in the hidden layer (from 3 to 30 in multiples of 3), 
and turning momentum on and off. The results were 
evaluated at a set of salient points, chosen across the full 
range of points in space. This helped to determine the 
optimal neural network architecture (here, 6 inputs-12 
nodes in the hidden layer-1 output) and the number of 
training epochs. Again, as this input set was rather small, 
81 neural networks of this architecture were created (80 to 
train, 1 to test) to evaluate the error associated with the 
predictions. However, it was a static view, considering 

only a single time-step out of the whole range of time 
steps from the ADH run (Fig. 5). 

 

 
Further investigations broke out of this static view 

and considered multiple time-steps. Since the geometry of 
this scenario contained 13703 nodes, widening out the 
scope to multiple time-steps suddenly introduced millions 
of rows of (potential) input data to the neural network for 
training. Although bisection had been used in reducing 
the parameter space even in the static case described 
above, here further reductions proved necessary, such as 
sampling within the geometry space and focusing only 
upon the most interesting handful of the total time-steps 
available. This scenario then served as a sandbox to test 
out several innovative data reduction ideas. This case was 
still limited in that it attempted to predict the temperature 
at one time-step for a fixed albedo and fixed specific heat 
of solids pairing, given several previous time-steps for all 
81 cases. Even at this level of surrogate model creation 
maturity, no attempt had been made to predict fully all 
time-steps of one case, given all other rows as a training 
set. This lack was later rectified by the Noyo contaminant 
trace scenario described below. 

 
 

Fig. 4.   

Fig. 5. This represents an oblique view of the 3D 
thermal  problem, the upper showing ADH results and 
the bottom showing corresponding neural network 

output. 
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4.3  Contaminant Trace 

 
A third domain also utilized the ADH code. It 

hypothesized that a pallet of a single contaminant had 
been released a few hundred meters above where the 
Noyo River flows out into the Fort Bragg Harbor to meet 
the Pacific Ocean. Tidal effects were turned off for these 
runs, as the study was to focus upon the river’s effects as 
the water velocity and eddy viscosity values were varied. 
Although the geometry was much simpler than the 
thermal experiment above (having only 2689 nodes), the 
full suite of 48 time-steps quickly compelled usage of 
data reduction techniques. The bisection method (as 
described above) resulted in 90 ADH runs. The original 
database of training samples comprised 11.6 million rows. 
The geometry component was reduced by using all 
boundary nodes and 50 percent of the interior nodes. The 
time component was similarly reduced by retaining the 
first 33 time-steps, but using only 6 of the final 15. Taken 
together, these reduction efforts resulted in the training 
data set going from 11.6 million rows to 4.5 million rows, 
a reduction of approximately 62 percent. Of the 90 ADH 
runs, the reduced data from 89 are being used for training 
a backpropagation neural network, and the remaining one 
(located near the center of the parameter space) is being 
used to test. In other words, information from all 89 ADH 
runs over 39 time-steps are being used to train and predict 
the behavior for one unseen case for all 48 time-steps. As 
evidenced in Fig. 6, the dynamics for this case are rather 
complex—certainly not a strawman figure. Sensitivity 
analysis is currently underway for architectures with 30, 
36, 44, and 88 nodes in the single hidden layer. Training, 
although time-consuming, will eventually provide a 
validated surrogate model for dynamics of the 
contaminant trace under widely-varying water velocity 
and eddy viscosity. Upon completion, this model can 
serve as an acceptable replacement for ADH within error 
bounds, and more importantly, can output answers within 
seconds in imitation of an ADH case that would take 2-3 
hours to execute. 

 
 

5.  BENEFITS ACCRUED BY OUR SOLUTION 

 
Chief among the benefits of this technique is that 

actual HPC run time was reduced significantly, while still 
allowing the user the ability to predefine an acceptable 
level of error in output and adapt the bisection runs to 
acquire training set information appropriately. Sensitivity 
analysis at various levels of the investigation, in turn, 
reinforced confidence in the method. 

 
 Once a surrogate model is developed, it can be 
provided to a lay user to emulate the numerical models 
within the ranges of training.  This does not require any 
specialized techniques or substantial experience in 
numerical modeling to use. Since a surrogate model can 

run and output its values within seconds as opposed to 
hours for a numerical model, it certainly demonstrates 
considerable time savings and lends itself much more 
readily to design optimization efforts and what-if 
analyses. A surrogate model typically runs on hardware 
platforms as unassuming as laptops and minimally 
configured personal computers. Specialized numerical 

Fig. 6 
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codes, on the other hand, often require resource-abundant 
environments (such as afforded by the high performance 
computing platforms), where costs can sometimes reach 
$30 per minute. Taken together, the ease of use, the speed 
of execution, and the relative low computing cost support 
the widespread use of these high-fidelity surrogate models 
in high-level planning efforts. 

 
 

6.  FUTURE WORK 

 
Over the past 2 years, considerable effort has been 

expended to investigate the feasibility of using surrogate 
models as stand-ins for more complicated, more 
expensive, and harder-to-use numerical models. When 
difficulties arose, such as the data inundation that is a 
natural by-product of these types of codes, many paths 
were proposed and tested, and appropriate fixes were 
developed. At present, three challenges serve to focus the 
effort.  

 
First, refining techniques to arrive at a “minimal” 

input set could still improve global performance. At 
present, the reductions are significant (on the order of 60-
65 percent often); however, other non-bisection 
techniques (that may be model-specific) should be 
investigated as well. Although a minimal set may never 
be attained, the techniques should be implemented that 
allow for a more rapid asymptotic approach toward such a 
minimal set. Possibilities include statistical techniques 
and some data mining algorithms. 

 
Second, many steps are still highly sequential in these 

methods. Some of this cannot be avoided—it is simply the 
nature of the problems. However, high on the list of 
priorities for future work is the need to refine the neural 
network training process to fully leverage parallel 
computing resources. Certainly the parallel nature of the 
HPC resources fit admirably well with the described 
sensitivity analyses. 

 
Third, all portions of the surrogate model 

construction process will be transitioned to the HPC 
environment. As emphasized throughout, these types of 
problems usually involve very large data storage 
requirements. The data preparation step discussed above 
needs to be able to quickly derive the reduced input space 
i from I. 

 
Success in any one of these areas could significantly 

improve the construction of surrogate models for faster 
utilization within high-level planning efforts. Together, 
the process could become much more automated, 
allowing the user to focus much more on different 
engineering designs under consideration and less on the 
computational tasks of data preprocessing.  

 

CONCLUSIONS 
 
As described, surrogate model construction offers a 

new, less expensive, more computationally efficient path 
in support of design optimization. Upfront, much effort 
has to be expended to generate a surrogate model that can 
emulate a numerical solver within given error bounds. 
Once done, however, SMD can be used innumerable times 
to interpolate for unseen cases, which may be useful for 
design comparisons and what-if scenario analyses. This 
feature, in itself, relegates the exhaustive, brute force 
HPC runs to history. The learning curve for use of 
surrogate models is much flatter than for the typical 
numerical solver, which can require years of experience 
to master. However, for the pedantic, the correctness of a 
surrogate model can be demonstrated very quickly by 
comparison to any within-range numerical solver output 
previously unseen. 

 
REFERENCES 

 
Demuth, H., M. Beale, and M. Hagan, 2007:  Neural 

Network Toolbox 5 user’s guide. The MathWorks, Inc., 
Natick, MA.  [Available online at http://www.agro.uba.ar/ 
users/paruelo/redes/Matlab%20y%20ANNs/nnet_version
%205.pdf.] 
 
Hsieh, B. B., and T. C. Pratt, 2001:  Field data recovery in 
tidal system using artificial neural networks (ANNs).  
Coastal and Hydraulics Engineering Technical Note 
CHETN-IV-38, U.S. Army Engineer Research and 
Development Center, Vicksburg, MS, 10 pp. 
http://chl.wes.army.mil/library/publications/chetn/ 
 
Mitchell, T., 1997:  Machine Learning. Boston: 
WCB/McGraw-Hill, 414 pp. 
 
Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. 
Flannery, 1992:  Numerical Recipes in FORTRAN: The 

Art of Scientific Computing.  Cambridge University Press 
New York, 963 pp. 

 

Rohwer, R., 1994:  The Time Dimension of Neural 
Network Models.  ACM SIGART Bulletin, 5(3), Special 

Section on Time in Neural Networks. 36-44.    

 

 

FUNDING 

 
The research described in this paper was funded through the 

System-Wide Water Resources Program (SWWRP), Dr. Steven L. 
Ashby, Environmental Laboratory, U.S. Army Engineer Research and 
Development Center (ERDC), Program Manager.  The authors would 
like to acknowledge the assistance of and express our thanks to Ms. 
Jackie Pettway, Coastal and Hydraulics Laboratory, ERDC, and Mr. 
David Stuart, Mr. Randall Hand, Mr. David Richards, Mr. Bobby 
Hunter, and Dr. Owen Eslinger, all of the Information Technology 
Laboratory, ERDC. Their assistance contributed greatly to the ongoing 
success of this project. 


